

Optimization in Supply Chain Planning

Dr. Christopher Sürie

Expert Consultant SCM Optimization

THE BEST-RUN BUSINESSES RUN SAP

Hierarchical Planning Approach and Modeling Capability

Optimizer Architecture and Optimization Strategies

Customer Cases

System Demo

Introduction: Supply Chain Management

Introduction: Supply Chain Management

mySAP SCM Solution Overview

Supply Chain Planning Matrix

(Stadtler/Kilger, 2005)

Introduction

Hierarchical Planning Approach and Modeling Capability

Optimizer Architecture and Optimization Strategies

Customer Cases

System Demo

How to deal with planning complexity?

Basic idea: Hierarchy of relaxations

Relaxations are derived by Aggregation

- **Time** \rightarrow **Periods**
- Product → Product groups

(e.g. ignore country specific documentation in packaging a product)

■ Resource → Resource Families

(e.g. summarize similar resources into one resource with cumulative capacity)

■ Locations → Regions

(e.g. aggregate different locations into a transportation zone (postal code areas)

Integration between different relaxations: Disaggregation

Hierarchical Planning

Supply Network Planning (SNP)

Supply Network Planning Procedures

SNP Heuristics

- Material availability constraints
- Rule-based
- First feasible plan

CTM (Capable To Match)

- Material availability and production capacity constraints
- Constraint-based propagation with backtracking search
- First feasible plan

SNP Optimizer

- Material availability and all capacity constraints
- (MI)LP and others
- Cost-based optimization

SNP Optimizer Application

Sourcing

Product-Mix

Which products and how much of them should be produced, transported, procured and stored?

Technology-Mix

- Which recipes (PPMs) should be applied?
- Which transportation type should be used?
- Which resource should be used?
- Temporal: When should we produce, transport, procure and store?
- Spatial: Where should we produce, procure and store? Wherefrom and whereto should we transport?

Finite Planning

Lot-Sizing

- Multi-Level-Capacitated Lot Sizing (MLCLSP)
- Campaign Planning

Inventory Control

- Target Days of Supply
- Shelf Life

Supply Network Optimization: Model Building

SNP Optimization Run

Supply Network Optimization: Lot-Sizing

Multi-Level Capacitated Lot Sizing Problem (MLCLSP)

- Setup cost and/or consumption in each bucket
- Good results
 - Setup cost small compared to storage cost (\rightarrow Small lots)

Setup consumption << bucket capacity</p>

Bad results

- Setup cost large compared to storage cost (large lots)
- Setup consumption big compared to bucket capacity

Supply Network Optimization: Lot-Sizing

Proportional Lot Sizing Problem (PLSP)

- Setup cost and/or setup consumption only if different PPM starts
- At most one startup per bucket

.Constraints on cross-period lots (= campaign quantity)

Minimal campaign quantity

Campaign quantity integer multiple of batch size

Manufacturing (PP/DS)

PP/DS Planning Procedures

PP/DS Heuristics

- Material availability, single-level finite
- Priority-based planning
- First partial plan

CTM (Capable To Match)

- Material availability and production capacity constraints
- Constraint-based propagation with backtracking search
- First feasible plan

PP/DS Optimizer

- All constraints
- Genetic Algorithm and Constraint Programming
- Cost-based Optimization

Feasible compact schedule

Delay Reduction

Makespan Minimization

Setup Minimization

■ Time

Cost

Resource Selection

PP/DS Optimizer: Model Overview

PP/DS Optimization Run

Integrated hierarchical planning

.SNP

- Planning only in SNP horizon
- Release SNP Orders only PP/DS horizon
- Respect PP/DS orders as fixed
 - capacity reduction
 - material flow
- Respect PP/DS setup state

.PP/DS

- Respect pegged SNP Orders as due dates
 - No capacity reduction
 - But material flow
- No restrictions for scheduling PP/DS orders

Classical vehicle routing problems: CVRP, CVRPTW

Extensions towards APO VSR (1):

- Order-based model
 - Source location and destination location per order (Pickup and delivery problem)

- Quantity regarding loading dimensions (tons, m³, ...)
- Material type (chemicals, food, ...)
- Service times for loading and unloading (depends on vehicle)

Extensions towards APO VSR (2):

- Cost for not delivering an order
- Soft/hard time constraints per order:
 - Earliest date for pickup
 - Due date for pickup
 - Earliest date for delivery
 - Due date for delivery

Extensions towards APO VSR (3):

- Per vehicle:
 - Travel characteristics (time, distance per lane)
 - Start location and end location
 - Constraints
 - Capacity per loading dimension (tons, m³, ...)
 - Limit for time, distance, number of stops
 - Break calendar
 - Costs:
 - Fixed cost
 - Traveled time
 - Traveled distance
 - Number of stops
 - Distance x Load (e.g. miles x tons)

Vehicle type = vehicles with identical travel & cost characteristics

Extensions towards APO VSR (4):

- Per location:
 - Deliveries require inbound resource
 - Opening times
 - Capacities
 - Pickups require outbound resource
 - Opening times
 - Capacities

Extensions towards APO VSR (5):

- Incompatibility constraints:
 - Between material types
 - Between vehicle types and material types
 - Between vehicle types and locations
- Schedule vehicles (e.g. trains, ships)
 - Route and schedule is fixed a priori
- Hubs
 - Indirect shipment through hub(s) versus direct shipment
 - Maximum waiting time at hub

Introduction

Hierarchical Planning Approach and Modeling Capability

Customer Cases

System Demo

Challenge: Generic Optimizer

Generic and Best of Breed

- planning level
- vertical industries
- run time requirement
- model complexity (size, constraints, objectives)

Generic Model (-> planning level)

- aggregated planning (LP / MILP)
- detailed planning (scheduling)

Customization (-> vertical industries)

- specialization the generic model to customer problem
- scripting the strategies (decomposition, goal programming)

Scalability (-> run time)

- greedy versus complex optimizations strategies
- parallelization

Open Architecture

- internal: adding new special optimizer (software evolution)
- external: integration of optimizer packages

SNP Optimizer Architecture

Scheduling Optimizer Architecture

Mastering the algorithmic complexity: Decomposition

Global versus local optimality -> SNP + DS

- Local optimality depends on neighborhood
- High solution quality by local optimization
- Local Optimization = Decomposition

Decomposition strategies

- **SNP:** time, resource, product, procurement
- DS: time, resource
- (Parallelization by "Agents")

SNP Time Decomposition

DS Time Decomposition - Local Improvement

Gliding window script

- 1. Optimize only in current window
- 2. Move window by a time delta
- 3. Go to first step

DS Metaheuristics - Bottleneck

Bottleneck Script

- **1. Determine bottleneck**
- 2. Schedule bottleneck resources only
- 3. Fix sequence on bottleneck resource
- 4. Schedule all resources

- "Generic" Optimizer
- Preprocessing
 - Which orders cannot be delivered at all?
 - Which order can be processed by which vehicle?
- Postprocessing
 - Shift travel activities forward or backward

VSR: The Optimizer (ct'd)

- Evolutionary local search (ELS) with small population (3)
- Uses GENEAL (GENeral Evolutionary Algorithm Library)
- Direct solution representation
 - Assignment of orders to vehicles
 - Routing of activities on vehicles
 - Scheduling of activities on vehicles
- Each "atomic" move has three phases:
 - **1.** Change assignment
 - 2. Change routing
 - 3. Change scheduling
- 19 "atomic" moves, classified into
 - Assignment moves
 - Routing moves
 - Scheduling moves

Hierarchical Planning Approach and Modeling Capability

Optimizer Architecture and Optimization Strategies

Customer Cases

System Demo

Challenges in modeling real-world problems

Generic nature of the SNP optimization model restricts exploitation of specific problem structure

Hierarchical Planning Approach and Modeling Capability

Optimizer Architecture and Optimization Strategies

Customer Cases

System Demo

